浏览全部资源
扫码关注微信
山西省中医院代谢病科,太原 030012
张冉冉,女,28岁,硕士研究生。研究方向:中医药防治内分泌及代谢病。
郭晓霞,E-mail:245467575@qq.com
收稿日期:2022-11-15,
纸质出版日期:2025-02-25
移动端阅览
张冉冉,郭晓霞,李玉珍.玄参-苍术与二甲双胍联用治疗2型糖尿病机制研究[J].北京中医药,2025,44(2):157-164.
ZHANG Ranran,GUO Xiaoxia,LI Yuzhen.Mechanism of Xuanshen-Cangzhu combined with metformin in treatment of type 2 diabetes mellitus based on animal experiment[J]. Beijing Journal of Traditional Chinese Medicine,2025,44(02):157-164.
张冉冉,郭晓霞,李玉珍.玄参-苍术与二甲双胍联用治疗2型糖尿病机制研究[J].北京中医药,2025,44(2):157-164. DOI: 10.16025/j.1674-1307.2025.02.008.
ZHANG Ranran,GUO Xiaoxia,LI Yuzhen.Mechanism of Xuanshen-Cangzhu combined with metformin in treatment of type 2 diabetes mellitus based on animal experiment[J]. Beijing Journal of Traditional Chinese Medicine,2025,44(02):157-164. DOI: 10.16025/j.1674-1307.2025.02.008.
目的
2
探讨玄参-苍术联合二甲双胍治疗2型糖尿病(T2DM)的机制。
方法
2
将SD大鼠分为空白组、模型组、对照组和治疗组,除空白组外其余各组采用高脂饮食联合链脲佐菌素(STZ)建立T2DM大鼠模型。对照组给予200 mg/kg二甲双胍混悬液灌胃,治疗组给予630 mg/kg玄参-苍术混悬液和200 mg/kg二甲双胍混悬液灌胃,模型组、空白组给予蒸馏水灌胃,均1次/d。6周后禁食过夜12 h,注射水合氯醛麻醉大鼠,收集腹主动脉血并分离血清。对比各组生化指标[空腹血糖(FBG)、餐后2 h血糖(PBG)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、尿素氮(BUN)、甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、空腹血清胰岛素(FINS)、血清糖化血清蛋白(GSP)],血清核转录因子(NF-κB)、大鼠隐热蛋白3(NLRP3),用液相色谱仪-质谱仪(LC-MS)非靶向代谢组学筛选差异代谢物并进行代谢通路富集分析。
结果
2
与空白组比较,模型组大鼠体质量低(
P
<
0.05),进食量和饮水量高(
P
<
0.05),FBG、PBG、GSP均高(
P
<
0.01);与模型组比较,治疗组进食量、饮水量减少(
P
<
0.05),体质量增高(
P
<
0.05);与对照组比较,治疗组体质量高、FBG低(
P
<
0.05)。与模型组比较,对照组和治疗组FBG、PBG、GSP均低(
P
<
0.05)。治疗组FBG、GSP均低于对照组,但差异无统计学意义(
P
>
0.05);治疗组PBG低于对照组(
P
<
0.05)。模型组大鼠FINS低于空白组(
P
<
0.01)。与模型组比较,对照组FINS呈下降趋势(
P
>
0.05),治疗组呈上升趋势(
P
>
0.05);对照组与治疗组比较,差异有统计学意义(
P
<
0.05)。与空白组比较,模型组大鼠ALT、BUN高(
P
<
0.05)。与模型组比较,对照组、治疗组ALT、BUN均无明显改善(
P
>
0.05)。与对照组比较,治疗组ALT、BUN均呈下降趋势(
P
>
0.05)。与空白组比较,模型组血清NF-κB、NLRP3水平高(
P
<
0.01)。与模型组比较,对照组血清NF-κB、NLRP3水平低,但差异无统计学意义(
P
>
0.05);治疗组血清NF-κB、NLRP3水平较模型组低(
P
<
0.01)。血清NLRP3水平与血清NF-κB水平呈正相关;血清NLRP3水平与PBG水平呈正相关,与FINS呈负相关。筛选出36种差异代谢物作为玄参-苍术联合二甲双胍治疗糖尿病作用机制的相关生物标志物,其中10个为表达上调代谢物,26个为表达下调代谢物,且大多数属于氨基酸类。D-谷氨酰胺和D-谷氨酸是玄参-苍术联合二甲双胍治疗糖尿病涉及的相关的代谢通路,L-谷氨酸为通路涉及的差异代谢物。
结论
2
玄参-苍术联合二甲双胍治疗糖尿病大鼠的生物学机制涉及调节D-谷氨酰胺和D-谷氨酸代谢通路基因的表达,以维持“谷氨酰胺-谷氨酸”动态平衡,抑制NF-κB/NLRP3通路激活,减轻炎症反应,进而提高机体对胰岛素敏感性、调节糖脂代谢紊乱。
Objective
2
To investigate the mechanism of
Xuanshen
(
Scrophulariae Radix
)-
Cangzhu
(
Atractylodis Rhizoma
)combined with metformin in the treatment of type 2 diabetes mellitus(T2DM).
Methods
2
SD rats were randomly divided into a blank group,model group,control group,and treatment group.Except for the blank group,all other groups were induced with a high-fat diet combined with streptozotocin(STZ)to establish a T2DM model.The control group was administered 200 mg/kg metformin suspension by gavage,while the treatment group received 630 mg/kg
Xuanshen-Cangzhu
suspension and 200 mg/kg metformin suspension by gavage.The model and blank groups received distilled water by gavage,all once daily. After six weeks,the rats were fasted overnight for 12 hours and anesthetized with chloral hydrate.Blood was collected from the abdominal aorta,and serum was separated.Biochemical parameters[fasting blood glucose(FBG),postprandial 2-hour blood glucose(PBG),alanine aminotransferase(ALT),aspartate aminotransferase(AST),blood urea nitrogen(BUN),triglycerides(TG),total cholesterol(TC),high-density lipoprotein cholesterol(HDL-C),low-density lipoprotein cholesterol(LDL-C),fasting serum insulin (FINS),and glycated serum protein(GSP)],nuclear factor-kappa B(NF-κB),and NLR family pyrin domain containing 3 (NLRP3),were measured and compared.Differential metabolites were screened using liquid chromatography-mass spectrometry (LC-MS)untargeted metabolomics,and metabolic pathway enrichment analysis was performed.
Results
2
Compared with the blank group,the model group exhibited lower body weight(
P
<
0.05),higher food and water intake(
P
<
0.05),and increased FBG,PBG,and GSP levels(
P
<
0.01).Compared with the model group,the treatment group showed reduced food and water intake (
P
<
0.05)and increased body weight(
P
<
0.05).C
ompared with the control group,the treatment group had higher body weight and lower FBG(
P
<
0.05).Both the control and treatment groups exhibited lower FBG,PBG,and GSP levels than the model group (
P
<
0.05).The treatment group had lower FBG and GSP levels than the control group,but the difference was not statistically significant(
P
>
0.05),whereas PBG was significantly lower in the treatment group than in the control group(
P
<
0.05).The FINS level in the model group was lower than in the blank group(
P
<
0.01).Compared with the model group,the control group showed a downward trend in FINS(
P
<
0.05),while the treatment group exhibited an upward trend(
P
<
0.05),with a statistically significant difference between the control and treatment groups(
P
<
0.05).Compared with the blank group, the model group had higher ALT and BUN levels(
P
<
0.05).Compared with the model group,the ALT and BUN levels in the control and treatment groups showed no significant improvement(
P
>
0.05),though the treatment group exhibited a downward trend in ALT and BUN compared with the control group(
P
<
0.05).Compared with the blank group,the model group showed higher serum NF-κB and NLRP3 levels(
P
<
0.01).Compared with the model group,the control group showed lower NF-κB and NLRP3 levels,but the difference was not statistically significant(
P
>
0.05),whereas the treatment group exhibited significantly lower NF-κB and NLRP3 levels than the model group(
P
<
0.01).Serum NLRP3 levels were positively correlated with NF-κB levels and PBG levels but negatively correlated with FINS levels.A total of 36 differential metabolites were identified as biomarkers related to the therapeutic mechanism of
Xuanshen-Cangzhu
combined with metformin for T2DM,including 10 upregulated and 26 downregulated m
etabolites,most of which belonged to amino acids.The metabolic pathways involved in the treatment were related to D-glutamine and D-glutamate metabolism,with L-glutamate as a differential metabolite within the pathway.
Conclusion
2
The biological mechanism of
Xuanshen-Cangzhu
combined with metformin in treating T2DM rats involves regulating the expression of genes in the D-glutamine and D-glutamate metabolic pathways, thereby maintaining the dynamic balance of the glutamine-glutamate cycle, inhibiting NF-κB/NLRP3 pathway activation, reducing inflammation, improving insulin sensitivity, and regulating glucose and lipid metabolism disorders.
中华医学会糖尿病学分会 . 中国2型糖尿病防治指南(2020年版) [J ] . 中华糖尿病杂志 , 2021 , 13 ( 4 ): 315 - 409 .
International Diabetes Federation . IDF Diabetes Atlas,10th edn [M ] . Belgium : International Diabetes Federation , 2021 .
向磊 , 王文佳 , 俞琦 . 基于中医脾胃论探讨2型糖尿病发病的炎症机制 [J ] . 贵州中医药大学学报 , 2023 , 45 ( 3 ): 5 - 8 .
周婧雅 , 赵进喜 , 张耀夫 , 等 . 运用施今墨降糖对药治疗糖尿病肾脏病探析 [J ] . 中医杂志 , 2019 , 60 ( 16 ): 1425 - 1427 .
田会东 , 王静 , 郭丽娜 , 等 . 基于网络药理学的“苍术-玄参”药对抗2型糖尿病作用机制研究 [J ] . 中国现代应用药学 , 2020 , 37 ( 2 ): 165 - 169 .
戚宇琪 . 玄参-苍术对2型糖尿病大鼠的降糖增效作用及对肠道菌群结构的影响 [D ] . 太原 : 山西省中医药研究院 , 2020 .
ESSER N , LEGRAND-POELS S , PIETTE J , et al . Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes [J ] . Diabetes Res Clin Pract , 2014 , 105 ( 2 ): 141 - 150 .
DING S , XU S , MA Y , et al . Modulatory mechanisms of the NLRP3 inflammasomes in diabetes [J ] . Biomolecules , 2019 , 9 ( 12 ): 850 .
王钰滢 , 崔德芝 . 糖尿病血管老化过程中调控NLRP3炎症小体活性的信号通路研究进展 [J ] . 山东医药 , 2023 , 63 ( 2 ): 93 - 96 .
ZHANG H , CHEN X , ZONG B , et al . Gypenosides improve diabetic cardiomyopathy by inhibiting ROS-mediated NLRP3 inflammasome activation [J ] . J Cell Mol Med , 2018 , 22 ( 9 ): 4437 - 4448 .
LU L , LU Q , CHEN W , et al . Vitamin D3 protects against diabetic retinopathy by inhibiting high-glucose-induced activation of the ROS/TXNIP/NLRP3 inflammasome pathway [J ] . J Diabetes Res , 2018 : 8193523 .
蔡晶 , 乔蕾颖 , 胡琳 , 等 . NLRP3炎症小体在糖尿病相关认知障碍发病中的作用及相应治疗研究进展 [J ] . 山东医药 , 2023 , 63 ( 20 ): 87 - 90 .
王宁 . Cdc42调节胰岛β细胞谷氨酰胺/谷氨酸代谢 [D ] . 南昌 : 南昌大学 , 2020 .
HABER EP , PROCÓPIO J , CARVALHO CR , et al . New insights into fatty acid modulation of pancreatic beta-cell function [J ] . Int Rev Cytol , 2006 , 248 : 1 - 41 .
SAMOCHA-BONET D , WONG O , SYNNOTT EL , et al . Glutamine reduces postprandial glycemia and augments the glucagon-like peptide-1 response in type 2 diabetes patients [J ] . J Nutr , 2011 , 141 ( 7 ): 1233 - 1238 .
STANCAKOVA A , CIVELEK M , SALEEM NK , et al . Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 finnish men [J ] . Diabetes , 2012 , 61 : 1895 - 1902 .
LIU X , ZHENG Y , GUASCH-FERRé M , et al . High plasma glutamate and low glutamine-to-glutamate ratio are associated with type 2 diabetes: Case-cohort study within the PREDIMED trial [J ] . Nutr Metab Cardiovasc Dis , 2019 , 29 ( 10 ): 1040 - 1049 .
ZHENG Y , HU FB , RUIZ-CANERA M , et al . Metabolites of glutamate metabolism are associated with incident cardiovascular events in the PREDIMED PRE vención con DIeta MED iterránea (PREDIMED) trial [J ] . J Am Heart Assoc , 2016 , 5 ( 9 ): 003755 .
ZHANG Y , BHAVNANI BR . Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens [J ] . BMC Neurosci , 2006 , 7 : 49 .
HAZZAA SM , EL-ROGHY ES , ELDAIM M AABD , et al . Monosodium glutamate induces cardiac toxicity via oxidative stress, fibrosis, and P53 proapoptotic protein expression in rats [J ] . Environ Sci Pollut Res Int , 2020 , 27 ( 16 ): 20014 - 20024 .
PALMER ND , STEVENS RD , ANTINOZZI PA , et al . Metabolomic profile associated with insulin resistance and conversion to diabetes in the insulin resistance atherosclerosis study [J ] . J Clin Endocrinol Metab , 2015 , 100 ( 3 ): 463 - 468 .
SCHOLZKE MN , POTROVITA I , SUBRAMANIAM S , et al . Glutamate activates NF-kappaB through calpain in neurons [J ] . Eur J Neurosci , 2003 , 18 ( 12 ): 3305 - 3310 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构